Logical Quantifiers: Examples

```
\forall \mathbf{i} \bullet \mathbf{i} \in \mathbb{N} \Rightarrow \mathbf{i} \ge \mathbf{0}
```

 $\forall \mathbf{i} \bullet \mathbf{i} \in \mathbb{Z} \Rightarrow \mathbf{i} \ge \mathbf{0}$

 \forall i, j • i $\in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow$ i < j \lor i > j

 $\exists i \bullet i \in \mathbb{N} \land i \ge 0$

 $\exists i \bullet i \in \mathbb{Z} \land i \ge 0$

 $\exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$

Logical Quantifiers: Examples

How to prove $\forall i \bullet R(i) \Rightarrow P(i)$?

How to prove $\exists i \bullet R(i) \land P(i)$?

How to disprove \forall i • R(i) \Rightarrow P(i) ?

How to disprove $\exists i \bullet R(i) \land P(i)$?

Prove/Disprove Logical Quantifications

Predicate Logic: Exercise 1

Consider the following predicate:

 $\forall \mathbf{x}, \mathbf{y} \bullet \mathbf{x} \in \mathbb{N} \land \mathbf{y} \in \mathbb{N} \Rightarrow \mathbf{x}^* \mathbf{y} > \mathbf{0}$

Choose <u>all</u> statements that are correct.

- 1. It is a theorem, provable by (5, 4).
- 2. It is a theorem, <u>provable</u> by (2, 3).
- 3. It is not a theorem, <u>witnessed</u> by (5, 0).
- 4. It is not a theorem, <u>witnessed</u> by (12, -2).
- 5. It is not a theorem, witnessed by (12, 13).

Predicate Logic: Exercise 2

Consider the following predicate:

 $\exists x, y \bullet x \in \mathbb{N} \land y \in \mathbb{N} \land x^* y > 0$

Choose <u>all</u> statements that are correct.

- 1. It is a theorem, provable by (5, 4).
- 2. It is a theorem, <u>provable</u> by (2, 3).
- 3. It is a theorem, provable by (-2, -3).
- 4. It is not a theorem, <u>witnessed</u> by (5, 0).
- 5. It is not a theorem, <u>witnessed</u> by (12, -2).
- 6. It is not a theorem, <u>witnessed</u> by (12, 13).

Predicate Logic: Exercise 3

Consider the following logical quantification:

!x,y.x:NAT&y:NAT=>x+y>=10&x+y<20

$\forall x, y \bullet x \in \mathbb{N} \land y \in \mathbb{N} \Rightarrow x + y \ge 10 \land x + y < 20$

Convert the above predicate to an equivalent one using the other logical quantifier.

Note the following constraints on your answer:

- Only put pairs of parentheses when necessary.
- Like the above predicate, there should be **<u>no</u>** white spaces.
- Like the above predicate, numerical constants (i.e., 10, 20) must appear as the right operands of the relational expressions (e.g., x + y >= 10).
- Relational expressions should be simplified whenever possible, e.g., write $x \ge 20$ rather than not(x < 20).

Be cautious about the spellings: this question will be graded **<u>automatically</u>** and no partial marks will be give to spelling mistakes.

Answer:

Interpreting a Formula: Parse Trees (1)

Interpreting a Formula: Parse Trees (2)

Interpreting a Formula: Parse Trees (3)

Interpreting a Formula: Parse Trees (4)

Interpreting a Formula: LMD (1)

Interpreting a Formula: LMD (2)

Interpreting a Formula: LMD (3)

Interpreting a Formula: LMD (4)

Interpreting a Formula: RMD (1)

Interpreting a Formula: RMD (2)

Interpreting a Formula: RMD (3)

Interpreting a Formula: RMD (4)

Interpreting a Formula: PT vs. LMD vs. RMD

```
\mathbf{F} \mathbf{p} \wedge \mathbf{G} \mathbf{q} \Rightarrow \mathbf{p} \mathbf{U} \mathbf{r}
```

Deriving Subformulas from a Parse Tree

Enumerate all **subformulas** of: F (p ⇒ G r) ∨ ((¬ q) U p)

Labelled Transition System (LTS)

$M = (S, \rightarrow, L), \text{ given } P$

Q. Formulate deadlock freedom:

From any state, it is always possible to make progress.

Path Satisfaction: Logical Operations

Path Satisfaction: Temporal Operations (1)

A path satisfies X¢

if the **next state** (of the "current state") satisfies it.

Path Satisfaction: Temporal Operations (2)

- A path satisfies Go
- if the every state satisfies it.

Path Satisfaction: Temporal Operations (3)

A path satisfies Fo

if some future state satisfies it.

Model Satisfaction

<u>Given</u>:

- Model M = (S, \rightarrow , L)
- State $s \in S$
- LTL Formula 💠

M, $s \models \phi$ iff for every path π of M starting at s, $\pi \models \phi$.

Formulation (over all paths)

How to prove vs. disprove M, $s \models \phi$?

Model vs. Path Satisfaction: Exercises (1.1)

Exercise: What if we change the <u>LHS</u> to π^2 ?

Model vs. Path Satisfaction: Exercises (1.2)

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (2.1)

Exercise: What if we change the <u>LHS</u> to π^2 ?

Model vs. Path Satisfaction: Exercises (2.2)

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (3.1)

Exercise: What if we change the LHS to π^2 ?

Model vs. Path Satisfaction: Exercises (3.2)

Exercise: What if we change the LHS to si?

Model vs. Path Satisfaction: Exercises (4.1)

Exercise: What if we change the LHS to π^2 ?

Model vs. Path Satisfaction: Exercises (4.2)

Exercise: What if we change the LHS to si?

Nesting "Global" and "Future" in LTL Formulas

<u>Q.</u> Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.1)

Exercise: What if we change the LHS to s2?

Nesting "Global" and "Future" in LTL Formulas

$s \models F\phi_1 \Rightarrow FG\phi_2$

Each path π starting with s is s.t. if eventually $\phi 1$ holds on π , then $\phi 2$ eventually holds on π continuously.

<u>Q.</u> Formulate the above nested pattern of LTL operators.

Q. How to prove the above nested pattern of LTL operators?

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.2)

Exercise: What if we change the LHS to s₂?

Nesting "Global" and "Future" in LTL Formulas

<u>Q.</u> Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (6.1)

Exercise: What if we change the LHS to s₂?

Model Satisfaction: Exercises (6.2)

Exercise: What if we change the LHS to s₂?

Path Satisfaction: Temporal Operations (4)

 $π \models φ1 U φ2$ There is <u>some future state</u> satisfies φ2, and <u>until then</u>, all states satisfy φ1.

 $(S_1) \rightarrow (S_2) \rightarrow \cdots \rightarrow (S_{i-1}) \rightarrow (S_i) \rightarrow (S_{i+1}) \rightarrow \cdots$

Path Satisfaction: Temporal Operations (5)

- $\pi = \phi 1 \mathbf{W} \phi 2$
- If there is ever <u>a future state</u> that satisfies ϕ_2 , then
- **until then**, all states satisfy ϕ_1 .
- Otherwise, $\phi 1$ must always be the case.

Path Satisfaction: Temporal Operations (6)

- $\pi = \phi 1 \mathbf{R} \phi 2$
- If there is ever <u>a future state</u> that satisfies ϕ_1 , then
- until then, all states satisfy \$\phi_2\$.
- Otherwise, ϕ_2 must always hold (i.e., never released).

Model Satisfaction: Exercises (7.1)

Exercise: What if we change the LHS to s₂?

Model Satisfaction: Exercises (7.2)

Exercise: What if we change the LHS to s₂?

Formulating Natural Language in LTL (1)

$$\pi \models \phi_1 \mathbf{U} \phi_2 \iff \left(\begin{array}{cc} \exists i \bullet i \ge 1 \land \begin{pmatrix} \pi^i \models \phi_2 \\ \land \\ (\forall j \bullet 1 \le j \le i - 1 \implies \pi^j \models \phi_1) \end{pmatrix} \right)$$

Formulating Natural Language in LTL (2.1)

Natural Language:

It's impossible to reach a state

where the system is started but not ready.

Assumed atoms:

- started
- ready

LTL Formulation

Formulating Natural Language in LTL (2.2)

Natural Language:

- Whenever a request is made,
- it will be acknowledged eventually.

Assumed atoms:

- requested
- acknowledged

LTL Formulation

Formulating Natural Language in LTL (2.3)

Natural Language:

An elevator traveling upwards at the 2nd floor

does not change its direction

when it has passengers wishing to to to the 5th floor.

Assumed atoms:

- floor2, floor5
- directionUp
- buttonPressed5

LTL Formulation

Program Verification

Rules of wp Calculus

Correctness of Programs: Assignment (1)

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$? $\{??\} \times := \times + 1 \{x > x_0\}$

Correctness of Programs: Assignment (2)

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

$$\{??\} \times := x + 1 \{x = 23\}$$

Rules of Weakest Precondition: Conditionals

wp(if B then S1 else S2 end, R)

Correctness of Programs: **Conditionals**

Is this program correct?
$\{x > 0 \land y > 0\}$
if $x > y$ then
<pre>bigger := x ; smaller := y</pre>
else
<pre>bigger := y ; smaller := x </pre>
$\{bigger \ge smaller\}$

Correctness of Programs: Sequential Composition

Contracts of Loops: Violations

Assume: Q and R are true

Correct Loops: Proof Obligations

- A loop is *partially* correct if:
 - Given precondition **Q**, the initialization step S_{init} establishes **LI** I.

• At the end of S_{body} , if not yet to exit, *LI* / is maintained.

If ready to exit and *LI* / maintained, postcondition *R* is established. 0

A loop terminates if:

• Given *LI I*, and not yet to exit, S_{body} maintains *LV V* as non-negative.

• Given *LI I*, and not yet to exit, *S*_{body} decrements *LV V*.

{**Q**} Sinit assert I(...); while (B)variant_pre := V(...); Sbody variant_post := V(...); assert variant_post >= 0; assert variant_post < variant_pre;</pre> assert I(...);

R

Correct Loops: **Proof** Obligations

1

2

3

4 5 6

7

8

9

10

11

12

13

14

15

};

```
I(i) == (1 \le i) / (i \le 6)
                                                 Specification
V(i) == 6 - i
--algorithm loop_invariant_test
 variables i = 1, variant_pre = 0, variant post = 0;
    assert I(i);
   while (i <= 5) {
      variant_pre := V(i);
      i := i + 1;
      variant post := V(i);
      assert variant_post >= 0;

    A loop is partially correct if:

      assert variant post < variant pre;
                                                         • Given precondition Q, the initialization step S<sub>init</sub> establishes LI I.
      assert I(i);
                                                         • At the end of S<sub>body</sub>, if not yet to exit, LI / is maintained.
                                                         • If ready to exit and LI I maintained, postcondition R is established.

    A loop terminates if:

                                                         • Given LI I, and not yet to exit, S<sub>body</sub> maintains LV V as non-negative.
                                                         • Given LI I, and not yet to exit, S<sub>body</sub> decrements LV V.
```

Example