Logical Quantifiers: **Examples**

```
\forall i \bullet i \in \mathbb{N} \Rightarrow i \geq 0
```
 $\forall i \bullet i \in \mathbb{Z} \Rightarrow i \geq 0$

 \forall i, j • i $\in \mathbb{Z} \wedge j \in \mathbb{Z} \Rightarrow i < j \vee i > j$

 $\exists i \bullet i \in \mathbb{N} \land i \geq 0$

 $\exists i \bullet i \in \mathbb{Z} \land i \geq 0$

 \exists i, j \bullet i $\in \mathbb{Z} \wedge j \in \mathbb{Z} \wedge (i < j \vee i > j)$

Logical Quantifiers: **Examples**

How to prove \forall i • R(i) \Rightarrow P(i) ?

How to prove \exists i • R(i) \land P(i) ?

How to disprove \forall i • R(i) \Rightarrow P(i) ?

How to disprove \exists i • R(i) \land P(i) ?

Prove/**Disprove** Logical **Quantifications**

Predicate Logic: **Exercise** 1

Consider the following predicate:

∀ x, y • x ∈ ℕ ∧ y ∈ ℕ 㱺 x * y > 0

Choose **all** statements that are **correct**.

- 1. It is a theorem, provable by (5, 4).
- 2. It is a theorem, provable by (2, 3).
- 3. It is not a theorem, witnessed by (5, 0).
- 4. It is not a theorem, witnessed by (12, -2).
- 5. It is not a theorem, witnessed by (12, 13).

Predicate Logic: **Exercise** 2

Consider the following predicate:

∃ x, y • x ∈ ℕ ∧ y ∈ ℕ 㱸 x * y > 0

Choose **all** statements that are **correct**.

- 1. It is a theorem, provable by (5, 4).
- 2. It is a theorem, provable by (2, 3).
- 3. It is a theorem, provable by (-2, -3).
- 4. It is not a theorem, witnessed by (5, 0).
- 5. It is not a theorem, witnessed by (12, -2).
- 6. It is not a theorem, witnessed by (12, 13).

Predicate Logic: **Exercise** 3

Consider the following logical quantification:

!x,y.x:NAT&y:NAT=>x+y>=10&x+y<20

[∀] x, y • x [∈] ℕ [∧] y [∈] ℕ ^㱺 x + y ≥ 10 ∧ x + y < 20

Convert the above predicate to an equivalent one using the other logical quantifier.

Note the following constraints on your answer:

- Only put pairs of parentheses when necessary.
- Like the above predicate, there should be no white spaces.
- Like the above predicate, numerical constants (i.e., 10, 20) must appear as the right operands of the relational expressions (e.g., $x + y \ge 10$).
- Relational expressions should be simplified whenever possible, e.g., write $x \ge 20$ rather than not($x < 20$).

Be cautious about the spellings: this question will be graded **automatically** and no partial marks will be give to spelling mistakes.

Answer:

Interpreting a Formula: Parse Trees (1)

<u>Interpreting a Formula: Parse Trees (2)</u>

Interpreting a Formula: Parse Trees (3)

Interpreting a Formula: Parse Trees (4)

Interpreting a Formula: LMD (1)

Interpreting a Formula: LMD (2)

Interpreting a Formula: LMD (3)

Interpreting a Formula: LMD (4)

Interpreting a Formula: RMD (1)

Interpreting a Formula: RMD (2)

Interpreting a Formula: RMD (3)

Interpreting a Formula: RMD (4)

Interpreting a Formula: **PT** vs. **LMD** vs. **RMD**

```
F p ∧ G q 㱺 p U r
```
Deriving **Subformulas** from a **Parse Tree**

F (p ^㱺 **G** r) ∨ ((¬ q) **U** p)

Labelled Transition System (**LTS**)

$M = (S, \longrightarrow, L)$, given P

Q. Formulate **deadlock freedom**:

From any state, it is always possible to make progress.

Path Satisfaction: **Logical** Operations

Path Satisfaction: **Temporal** Operations (1)

^A**path** satisfies **X**

if the **next state** (of the "current state") satisfies it.

Path Satisfaction: **Temporal** Operations (2)

- ^A**path** satisfies **G**
- if the **every state** satisfies it.

Path Satisfaction: **Temporal** Operations (3)

- ^A**path** satisfies **F**
- if **some future state** satisfies it.

Model Satisfaction

Given:

- \bullet Model **M** = (S, \rightarrow, L)
- State **s** [∈] S
- LTL Formula φ

M, $s \vDash \phi$ iff for every path **π** of M starting at $s, \pi \vDash \phi$.

Formulation (over **all** paths)

How to prove vs. disprove M , $s \models \phi$?

Model vs. **Path** Satisfaction: Exercises (1.1)

Exercise: What if we change the LHS to π^2 ?

Model vs. **Path** Satisfaction: Exercises (1.2)

Exercise: What if we change the LHS to s1?

Model vs. **Path** Satisfaction: Exercises (2.1)

Exercise: What if we change the LHS to π^2 ?

Model vs. **Path** Satisfaction: Exercises (2.2)

Exercise: What if we change the LHS to s1?

Model vs. **Path** Satisfaction: Exercises (3.1)

Exercise: What if we change the LHS to π^²?

Model vs. **Path** Satisfaction: Exercises (3.2)

Exercise: What if we change the LHS to s1?

Model vs. **Path** Satisfaction: Exercises (4.1)

Exercise: What if we change the LHS to π^²?

Model vs. **Path** Satisfaction: Exercises (4.2)

Exercise: What if we change the LHS to s1?

Nesting "Global" and "Future" in **LTL Formulas**

^s[⊨] **FG**

Q. Formulate the above nested pattern of LTL operator. **esting "**Global" and "Future" in LTL Formulas
 $S \models FG \phi$

<u>Q. Formulate</u> the above nested pattern of LTL operator.

Q. How to **prove** the above nested pattern of LTL operators?

Each path starting with s is s.t. eventually, holds continuously.

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.1)

Exercise: What if we change the LHS to s_2 ?

Nesting "Global" and "Future" in **LTL Formulas**

$s \vDash \mathsf{F}\phi_1 \Rightarrow \mathsf{FG}\phi_2$

Each path π starting with s is s.t. if eventually ϕ 1 holds on π ,

then ϕ 2 eventually holds on π continuously.

Q. Formulate the above nested pattern of LTL operators.

Q. How to **prove** the above nested pattern of LTL operators?

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.2)

Exercise: What if we change the LHS to s₂?

Nesting "Global" and "Future" in **LTL Formulas**

^s[⊨] **GF**

Q. How to **prove** the above nested pattern of LTL operators?

Each path starting with s is s.t. continuously, eventually holds.

Q. How to **disprove** the above nested pattern of LTL operators?

Model Satisfaction: Exercises (6.1)

Exercise: What if we change the LHS to s₂?

Model Satisfaction: Exercises (6.2)

Exercise: What if we change the LHS to s_2 ?

Path Satisfaction: **Temporal** Operations (4)

- $π$ $|=$ $φ1$ U $φ2$ There is some future state satisfies ϕ 2, and
- until then, all states satisfy ϕ 1.

Path Satisfaction: **Temporal** Operations (5)

- $|\pi| = \phi_1 \mathsf{W} \phi_2$
- If there is ever a future state that satisfies ϕ 2, then
- until then, all states satisfy ϕ 1.
- Otherwise, ϕ 1 must always be the case.

Formulation (over a path)

Path Satisfaction: **Temporal** Operations (6)

- $π \mid = φ1 R φ2$
- If there is ever a future state that satisfies ϕ 1, then
- until then, all states satisfy ϕ 2.
- Otherwise, ϕ 2 must always hold (i.e., never released).

Model Satisfaction: Exercises (7.1)

Exercise: What if we change the LHS to s₂?

Model Satisfaction: Exercises (7.2)

Exercise: What if we change the LHS to s₂?

Formulating **Natural Language** in **LTL** (1)

I had smoked until I was 22.

Atom **t**: I was 22

Atom **s**: I smoke

Q. Is **^s U t** an appropriate formulation?

$$
\pi = \phi_1 \mathbf{U} \phi_2 \iff \left(\exists i \bullet i \ge 1 \land \left(\begin{array}{c} \pi^i \vDash \phi_2 \\ \land \\ (\forall j \bullet 1 \le j \le i-1 \Rightarrow \pi^j \vDash \phi_1) \end{array} \right) \right)
$$

Formulating **Natural Language** in **LTL** (2.1)

Natural Language:

It's impossible to reach a state

where the system is started but not ready.

Assumed atoms:

- started
- ready

LTL Formulation

Formulating **Natural Language** in **LTL** (2.2)

Natural Language:

- Whenever a request is made,
- it will be acknowledged eventually.

Assumed atoms:

- requested
- acknowledged

LTL Formulation

Formulating **Natural Language** in **LTL** (2.3)

Natural Language:

- An elevator traveling upwards at the 2nd floor
- does not change its direction
- when it has passengers wishing to to to the 5th floor.

LTL Formulation

Assumed atoms:

- floor2, floor5
- directionUp
- buttonPressed5

Program Verification

Rules of wp Calculus

Correctness of Programs: Assignment (1)

Correctness of Programs: Assignment (2)

What is the weakest precondition for a program $x := x + 1$ to establish the postcondition $x > x_0$?

$$
\{?\}\} \times \ := \ x \ + \ 1 \ \{x = 23\}
$$

Rules of **Weakest Precondition**: **Conditionals**

wp(**if** B **then** S1 **else** S2 **end**, **R**)

Correctness of Programs: **Conditionals**

Correctness of Programs: **Sequential Composition**

Contracts of Loops: **Violations**

Assume: Q and R are **true**

Correct Loops: Proof Obligations

- A loop is **partially** correct if:
	- \circ Given precondition Q, the initialization step S_{init} establishes LI I.

 \circ At the end of S_{body} , if not yet to exit, LI I is maintained.

If ready to exit and LI I maintained, postcondition R is established. \circ

• A loop *terminates* if:

 \circ Given LI I, and not yet to exit, S_{body} maintains LV V as non-negative.

 \circ Given LI I, and not yet to exit, S_{body} decrements LV V.

 S_{init} assert $I(...)$; while (B) { variant pre := $V(...)$; S_{body} variant_post := $V(...)$; assert variant post $>= 0;$ assert variant_post < variant_pre; assert $I(\ldots)$;

 $\{Q\}$

Correct Loops: Proof Obligations

1

 $\overline{2}$

3

4 5 6

7

8

9

 10

 11

 12

 13

 14

15

 $\}$:

```
I(i) == (1 \le i) / \{i \le 6\}Specification
V(i) == 6 - i--algorithm loop_invariant_test
 variables i = 1, variant pre = 0, variant post = 0;
    assert I(i);
   while (i \le 5) {
      variant pre := V(i);
      i := i + 1;
      variant post := V(i);
      assert variant post >= 0;• A loop is partially correct if:
      assert variant post \leq variant pre;
                                                        • Given precondition Q, the initialization step S_{init} establishes LI I.
      assert I(i);
                                                        \circ At the end of S_{body}, if not yet to exit, LI I is maintained.
                                                        \circ If ready to exit and LI I maintained, postcondition \vec{R} is established.
                                                     • A loop terminates if:
                                                        \circ Given LI I, and not yet to exit, S_{body} maintains LV V as non-negative.
                                                        \circ Given LI I, and not yet to exit, S_{body} decrements LV V.
```
Example