Logical Quantifiers: Examples

vieieN=i20
vieie/Z=i20
Vi,jeielZAajelZ=i<jVvi>]
JieieNAI2O0
JjeieZNi20

3i,jeielZnjelZ N(i<jVi>])

Logical Quantifiers: Examples

How to prove v i ® R(i) = P(i) ?
How to prove 3 i @ R(i) A P(i) ?
How to disprove v i ® R(i) = P(i) ?

How to disprove 3 i @ R(i) A P(i) ?

Prove/Disprove Logical Quantifications

e Prove or disprove: Vx e (xeZA1<x<10) = x>0.

e Prove or disprove: Vx e (xeZA1<x<10)=x>1.

e Prove ordisprove: 3x e (xeZA1<x<10)Ax > 1.
e Prove or disprove that 3x e (x€ZA1<x<10)Ax>107?

Predicate Logic: Exercise 1

Consider the following predicate:
vx,yexeNaAayeN=x*y>0

Choose all statements that are correct.

It is a theorem, provable by (5, 4).

It is a theorem, provable by (2, 3).

It is not a theorem, witnessed by (5, 0).
It is not a theorem, witnessed by (12, -2).
It is not a theorem, witnessed by (12, 13).

ol o A o e B

Predicate Logic: Exercise 2

Consider the following predicate:
ax,yexeNAayeNAx*y>0

Choose all statements that are correct.

It is a theorem, provable by (5, 4).

It is a theorem, provable by (2, 3).

It is a theorem, provable by (-2, -3).

It is not a theorem, witnessed by (5, 0).
It is not a theorem, witnessed by (12, -2).
It is not a theorem, witnessed by (12, 13).

0 A o O s 2 I

Predicate Logic: Exercise 3

Consider the following logical quantification:

Ix,y.x:NAT&Y:NAT=>x+y>=108x+y<20 'V X, Y ® X € N A y € N = x + y 2 10 A X + y < 20
Convert the above predicate to an equivalent one using the other logical quantifier.

Note the following constraints on your answer:

¢ Only put pairs of parentheses when necessary.
e Like the above predicate, there should be no white spaces.

o Like the above predicate, numerical constants (i.e., 10, 20) must appear as the right operands of the relational expressions (e.g., x + y >=10).
» Relational expressions should be simplified whenever possible, e.g., write x >= 20 rather than not(x < 20).

Be cautious about the spellings: this question will be graded automatically and no partial marks will be give to spelling mistakes.

Answer:

Interpreting a Formula: Parse Trees (1)

i
I FpaGq=pUr
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: Parse Trees (2)

i
I FprGq=pUr)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: Parse Trees (3)

T
1

Fpar(Gg=pUr)
p [propositional atom

(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication
(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: Parse Trees (4)

i
L Fpr((Gq=p Ur)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: LMD (1)

i
I FpaGq=pUr
p [propositional atom
(-0) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: LMD (2)

i
I FprGq=pUr)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: LMD (3)

T
1

Fpar(Gg=pUr)
p [propositional atom

(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication
(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: LMD (4)

i
L Fpr((Gq=p Ur)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: RMD (1)

i
I FpaGq=pUr
p [propositional atom
(-0) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: RMD (2)

i
I FprGq=pUr)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: RMD (3)

T
1

Fpar(Gg=pUr)
p [propositional atom

(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication
(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: RMD (4)

i
L Fpr((Gq=p Ur)
p [propositional atom
(=) [logical negation
(oA P) [Logical conjunction
(pVv o) [logical disjunction
(¢ = ¢) [logical implication

(X9) [neXt state
(Fo) [some Future state
(Go) [all future states (Globally)
(pU o) [Until
(pW o) [Weak-until

(¢R¢)

Interpreting a Formula: PT vs. LMD vs. RMD

FpaGqgq=pUr

Deriving Subformulas from a Parse Tree

Enumerate all subformulas of:
F(p=6Gr)v(-q) Up)

Labelled Transition System (LTS)
M= (S, —, L), given P

Q. Formulate deadlock freedom:
From any state, it is always possible to make progress.

Path Satisfaction: Logical Operations

A path satisfies a proposition
if its initial state (“current state”) satisfies it.

mEPp
mME T
mME L
mME -
mE ¢l A $2
mE ¢1 v ¢2

Path Satisfaction: Temporal Operations (1)

A path satisfies X¢
if the next state (of the “current state”) satisfies it.

Formulation_(over a path)

Q. What is M3 = X p checking?

Path Satisfaction: Temporal Operations (2)

A path satisfies G¢
if the every state satisfies it.

Formulation_(over a path)

Path Satisfaction: Temporal Operations (3)

A path satisfies F¢
if some future state satisfies it.

Formulation_(over a path)

Model Satisfaction

Given:
® Model M = (S, —, L)
® State s € S
e LTL Formula ¢

M, s & ¢ iff for every path 11 of M starting at s, 17 = ¢.

Formulation_(over all paths)

How to prove vs. disprove M, s = ¢?

Model vs. Path Satisfaction: Exercises (1.1)

Recall: M= p & p € L(s1)

Say: M =S — S1 S — S
mME T

mHE L

TEPAQ

TEPpVQ
TEPp-=q

mMET
MEr=pAqQAT

Exercise: What if we change the LHS to m2?

Model vs. Path Satisfaction: Exercises (1.2)

sk p < all mwstartingats, mEp

So = T
So = L
So|=P/\q

SoFEpV(q
Sokp=q

So =T
SoFTr=pPAQAT

Exercise: What if we change the LHS to s.?

Model vs. Path Satisfaction: Exercises (2.1)

Recall: m= X ¢ & m2 = ¢

SGYZ'IT=SO > S —™ S2 — S

MEXT
mE XL
mTEX(QAT)
MEXqQAT
m=X(@Q=r1
mEXq=r

Exercise: What if we change the LHS to m2?

Model vs. Path Satisfaction: Exercises (2.2)

s = ¢ < all wstarting at s, M= ¢

SoEXT
So = X L
So=X(qAT)
SosEXqQATr
so=X(q=r)
SsEXq=r

Exercise: What if we change the LHS to s.?

Model vs. Path Satisfaction: Exercises (3.1)

MTEGdeVvVieial=1mkE¢
Say: M =So — S1 — S2 — Sz — ...

M=G T
MHEG L
TEGA(p AT)
M=Gr
mM=Gr

Exercise: What if we change the LHS to m2?

Model vs. Path Satisfaction: Exercises (3.2)

s = ¢ < all wstarting at s, M= ¢

So=G T
So = G L
So=G a(p A T)
So=EGT
s:=Gr

Exercise: What if we change the LHS to s.?

Model vs. Path Satisfaction: Exercises (4.1)

TEFdeTJiei2l ATTE
Say: M =S — S1 — S — Sz — ...

mTEFT
mEF L
TE=Fa(pAr)
mE=Fr
mTEF(QAT

Exercise: What if we change the LHS to m2?

Model vs. Path Satisfaction: Exercises (4.2)

s= ¢ < all wstarting at s, M= ¢

So=F T
So = F L
so=F a(p A T)
So=Fr
soEF(qAT)

Exercise: What if we change the LHS to s:?

Nesting "Global” and “"Future” in LTL Formulas
s=FG ¢
]

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.1)

s= ¢ < all wstarting at s, M= ¢

So=EFG T

soI=FG(pvq)

So|=FG(pVI")

Exercise: What if we change the LHS to s:?

Nesting "Global” and “"Future” in LTL Formulas

s = Fo1 = FGo:

Each path m starting with s is s.t. if eventually ¢1 holds on ,

then ¢2 eventually holds on 1T continuously.

Q. Formulate the above nested pattern of LTL operators.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Model Satisfaction: Exercises (5.2)

s= ¢ < all wstarting at s, M= ¢

scEF(-qAar)=FGr

scEF(-qvr)=FGr

Exercise: What if we change the LHS to s:?

Nesting "Global” and “"Future” in LTL Formulas
s = GF ¢
]

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Model Satisfaction: Exercises (6.1)

s= ¢ < all wstarting at s, M= ¢

So=GF p

So|=GF(pvq)

Exercise: What if we change the LHS to s:?

Model Satisfaction: Exercises (6.2)

s= ¢ < all wstarting at s, M= ¢

SsEGF p=GFr

sOFGFr=GFp

Exercise: What if we change the LHS to s:?

Path Satisfaction: Temporal Operations (4)

ml= $1U ¢2
There is some future state satisfies ¢2, and

until then, all states satisfy ¢1 .

Formulation_(over a path)

Path Satisfaction: Temporal Operations (5)

T |=¢1W ¢2
If there is ever a future state that satisfies ¢2, then

until then, all states satisfy ¢1.

Otherwise, ¢1 must always be the case.

Formulation_(over a path)

Path Satisfaction: Temporal Operations (6)

m|=¢1R ¢$2
If there is ever a future state that satisfies ¢1, then

until then, all states satisfy ¢2.

Otherwise, $2 must always hold (i.e., never released).

)@ @ Sivi}— oo

Formulation_(over a path)

Model Satisfaction: Exercises (7.1)

s= ¢ < all wstarting at s, M= ¢

So|=pUI"

So|=pWI"

scErRp

Exercise: What if we change the LHS to s:?

Model Satisfaction: Exercises (7.2)

s= ¢ < all wstarting at s, M= ¢

scE(pvr)U(par)

scE(pvrW(p AT

sscE(pAar)R(pvr)

Exercise: What if we change the LHS to s:?

Formulating Natural Language in LTL (1)

Natural Language:
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is s U T an appropriate formulation?

Tl'ilqug
™ E ¢1Udpo — diei>1A] A |
(Vjel1<j<i-1 = 7l =d¢q)

Formulating Natural Language in LTL (2.1)

Natural Language:
Its impossible to reach a state
where the system is started but not ready.

Assumed atoms:
- started
- ready

LTL Formulation

Formulating Natural Language in LTL (2.2)

Natural Language:
Whenever a request is made,
it will be acknowledged eventually.

Assumed atoms:
- requested

- acknowledged

LTL Formulation

Formulating Natural Language in LTL (2.3)

Natural Language:
An elevator traveling upwards at the 2nd floor
does not change its direction
when it has passengers wishing to to to the 5th floor:

LTL Formulation

Assumed atoms:
- floor2, floor5
- directionUp
- buttonPressed5

Lecture
Program Verification

Rules of wp Calculus

Correctness of Programs: Assignment (1)

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xp?

{7} x :=x + 1{x>x}

Correctness of Programs: Assignment (2)

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xy?

{?}x := x + 1{x=23}

Rules of Weakest Precondition: Conditionals

wp(if B then S1 else S2 end, R)

Correctness of Programs: Conditionals

Is this program correct?

{x>0Ay>0}
if x > y then
bigger := x ; smaller :

else

bigger := y ; smaller :
end
{bigger > smaller}

Correctness of Programs: Sequential Composition

Is{ True } tmp := x; x := y; y := tmp{ x>y } correct?

Contracts of Loops: Example

Specification

Assume: Q and R are tfrue

1 B1(i) == (1 <= 1) /\ (i <= 6)
2 BV(i) == 6 - 1
3 B-—algorithm loop invariant_test
4 variables i = 1, variant_pre = 0, variant_post = 0;
5 {
6 assert I(i);
7 while (i <= 5) {
8 variant_pre := V(i);
9 i =1+ 1;
10 variant_post := V(i);
11 assert variant_post >= 0;
12 assert variant_post < variant_pre;
13 assert I(1i);
14
15
end of iteration i I \V;

Runtime Checks

Precondition
Violation

Loop
Invariant
Violation

Postcondition
Violation

V20AV<Y, !

Sbodyl o
V<ovVzV, Loop

. :. > Variant
Violation

Contracts of Loops: Violations

O©CoNOOOTRA~WN =

{

I(i) ==
V(i) ==
——algorithm Ioop invariant_ test
variables i = 1,

(1 <= 1) /\

6 - 1

(i <= 6)

variant_pre

assert I(1i);

while (i <= 5) {
variant_pre := V(1i);
i =1+ 1;

variant_post := V(1i);
assert variant_post >= 0;

0,

Specification

Assume: Q and R are true

variant_post

assert variant_ post < variant_pre;

assert I(i);

invariant: 1 <= i <=5

variant: 5 - i

V20AV<V, A

x Sbmwl

Runtime Checks

Precondition
Violation

Loop
Invariant
Violation

Postcondition
Violation

Loop
Variant
Violation

V<OovVzYV,

...........

P .

Correct Loops: Proof Obligations

e Aloop is partially correct if:

o Given precondition @, the initialization stei Sinit establishes LI 1.

o At the end of Spogy, if Not yet to exit, L/ / is maintained.

o If ready to exit and L/ / maintained, iostcondition R is established.
{Q}

* A loop terminates if:
Sinit

o Given LI I, and not yet to exit, Spoqy maintains LV V as non-negative.
while(B) {
variant_pre := V(...); o Given LI I, and not yet to exit, Spoq, decrements LV V.
= V(...);

variant_post :=

assert variant_post >= 0;

assert variant_post < variant_pre;
assert I(...);

{R}

Correct Loops: Proof Obligations Example

1 (1 <= 1) /\ (i <= 6) : H

i =6 Specification

3 B-—algorithm loop invariant_test

4 variables i = 1, variant_pre = 0, variant_post = 0;

5 {

6 assert I(1i);

7 while (i <= 5) {

8 variant_pre := V(i);

9 i:=1+ 1;

10 variant_post := V(1);

11 assert variant _post >= 0; e Aloop is partially correct if:

12 assert variant post < variant_pre; o Given precondition @, the initialization step Sj; establishes L/ /.
13 assert I(1); i

14 ;

15 o At the end of Sy, if Not yet to exit, L/ / is maintained.

o If ready to exit and L/ / maintained, iostcondition R is established.

e A loop terminates if:

o Given LI I, and not yet to exit, Sbodi maintains LV V as non-negative.
o Given LI I/, and not yet to exit, Sbodi decrements LV V.

